
Zend to Zendoo upgrade
ShortGuide v1.5 - Block Explorer

2021-12-05

What’s new:

With Zendoo we are introducing sidechain support to our zen node network. The
Zendoo hard fork is already active on testnet, and will activate on mainnet on December
1st, 2021 at block height 1047600.

Please note that starting with zend v3.0.3-bitcore the bmi2 and adx CPU flags are
required to run zend. These flags are supported starting from Intel Broadwell and AMD
Excavator CPU architectures. You can check if your host is compatible using the
following command:

(grep -q "adx" /proc/cpuinfo && grep -q "bmi2" /proc/cpuinfo) &&

echo "v3.0.3 supported" ||

echo "v3.0.3 NOT supported"

We recommend running zendoo on a machine with at least 4 CPU cores and high clock
speed(>3GHz)/IPC and at least 16GB of memory.

For enabling chain interoperability (eg. bi-directional coin transfers between mainchain
and sidechains) we introduced two new transaction types:

○ Version -4: this transaction type extends the behaviour of a transparent
transaction by adding the possibility to interact with sidechains (eg. create a
sidechain, send coins to a sidechain, request withdrawal from a sidechain, etc.)
For this purpose, additional kinds of outputs and inputs have been added to the
transparent transaction. For example, to enable the sending of coins to
sidechains, a specific array of outputs was introduced that specifies the amounts
transferred and the details of the destination address. Please note: This kind of
output does not create UTXOs in the mainchain because the corresponding
amount is made available on the sidechain side. This means that the amount
sent from the mainchain to a sidechain is burnt on the mainchain. This new kind

https://github.com/HorizenOfficial/zen/releases/tag/v3.0.3-bitcore

of transaction is contained in the same vector of the other previously supported
transactions (eg. version 1, 2, -3).

○ Version -5: this type of transaction - called certificate - is specifically meant to
transfer coins from a sidechain to a mainchain transparent P2PKH address
(“backward transfer”). For this reason, the output amount will usually be greater
than the input amount. A certificate contains, as any “standard” transaction, a
list of inputs which are used to pay fees, and two lists of outputs: “normal”
outputs (typically the change for the inputs used for the fees) and “backward
transfer” outputs (users’ withdrawals originated in the sidechain). Certificates
also contain additional fields that are required for their validation (eg. SNARK
proofs, additional data). Certificates are not included in the main transaction
vector, but are listed in a separate array (in the JSON block representation the
array is called “cert”).

The two transactions mentioned above implement the Cross Chain Transfer Protocol*.
You can find a detailed explanation of their structure in the following document.

For a more complete description of their purpose and behaviour, please refer to our
Zendoo whitepaper:
https://www.horizen.io/assets/files/Horizen-Sidechain-Zendoo-A_zk-SNARK-Verifiable-
Cross-Chain-Transfer-Protocol.pdf

*Cross-Chain Transfer Protocol is the protocol that is used by the mainchain to interact with the
sidechains.

ZencashJS:

A new version of zencashjs (2.0.1) has been released that adds support for
decoding of the new version -4/-5 transaction types. Please follow the migration
instructions on github to upgrade.

Certificate overview:

As mentioned above, the certificate is the way for users to receive the funds
withdrawn in a specific sidechain. The protocol requires that each sidechain
sends a certificate on a regular basis, called “epoch”. The epoch length (specified
in number of mainchain blocks) is specific for any sidechain. For an epoch there
can be multiple certificates specifying the withdrawals related to the past epoch.
Such certificates can differ from each other, even for the same sidechain because
of the possible presence of forks in the sidechain leading to different histories.

https://docs.google.com/document/d/1JGg9eXMjaidmbyJ5YDpB3XeTuX1p2hiSUJa05p0-R8s/edit#heading=h.elxwcd7472u0
https://www.horizen.io/assets/files/Horizen-Sidechain-Zendoo-A_zk-SNARK-Verifiable-Cross-Chain-Transfer-Protocol.pdf
https://www.horizen.io/assets/files/Horizen-Sidechain-Zendoo-A_zk-SNARK-Verifiable-Cross-Chain-Transfer-Protocol.pdf
https://www.npmjs.com/package/zencashjs/v/2.0.1
https://github.com/HorizenOfficial/zencashjs/tree/v2.0.1#migrating-from-1x-to-2x
https://github.com/HorizenOfficial/zencashjs/tree/v2.0.1#migrating-from-1x-to-2x

Such fork resolution is resolved in a more abstract way by relying on a “quality
level” associated with each certificate. For example, in a sidechain that follows
the longest chain rule model, the quality will reflect the number of sidechain
blocks. By comparing the quality, each mainchain node will be able to determine
- after a certain given timeframe - what is the highest quality certificate to be
considered final for that epoch. Having this mechanism of finality resolution, the
backward transfers cannot be considered spendable immediately after the
containing certificate is included in a block. Each epoch has a time window that
allows the receival of certificates. During this period, backward transfers of the
received certificates are not spendable because each certificate for the same
epoch can be superseded by a new one with a higher quality. In such a situation,
the backward transfers of the superseded certificate are voided.

In other words, a “certificate” and its “backward transfers” can have 3 different
states:

■ Mature: the “backward transfers” are spendable at a given blockchain
height.

■ Immature: the “backward transfers” are not spendable yet at a given
blockchain height.

■ Superseded: the “backward transfers” will never be spendable not
depending on any given blockchain height.

As previously mentioned, certificates spend regular inputs for paying fees and
have regular outputs to manage the change. These regular inputs and outputs
are immediately considered final as soon as the certificate is included in a block,
even if the certificate was superseded.

What you need to know:

Due to changes to the indexes for the explorer from zen 2.0.24 to 3.0.3 a reindex will be
needed (on testnet and/or on mainnet), alternatively a seed of the .zen/blocks and
.zen/chainstate folders for mainnet can be downloaded from here.

With the introduction of certificates, some of the APIs have been updated to allow
filtering / distinguishing non mature amounts (eg. /addr/:addr, /tx/:txid, etc ..). Typically
in most of the cases you would not be interested in seeing immature outputs (filtered by

https://downloads.horizen.io/file/InfraPublic/zen_v3.0.1_addressIndexing_seed_block_1038500.tgz

default by most of the APIs) but consider that for certificates - after some blocks - the
same command could return additional data if the certificate matured (eg. /tx/:txid
would also return the mature outputs after having reached the maturity height).

As mentioned in the introduction, new fields were introduced in the structure of
transactions with version -4 and -5 and APIs returning transactions and blocks now have
an extended structure. For transactions with type -4, the following additional fields have
been introduced: “vcsw_ccin”, “vsc_ccout”, “vft_ccout”, “vmbtr_out”. The introduction
of these fields may require a change in your parsing logic if you are retrieving the raw
transaction content. Please note that both input fields (vcsw_ccin) and output fields
(vsc_ccout, vft_ccout”, vmbtr_out) do not spend / create mainchain UTXOs but instead,
create sidechain transfers. For this reason, you may not need to update your business
logic. Please verify your specific implementation and act accordingly.

For certificate transactions with version -5, beyond the other additional fields, please
note that the list of outputs includes both “change” outputs (immediately spendable)
and backward transfers (whose spendability is subject to the rules described above) that
are identified by an additional boolean field named “backwardtransfer”.

You can find a more complete example of both transaction formats at the end of this
document.

The introduction of the new transaction types -4 and -5 implies that. If you are using
such APIs you might have to update your implementation to take into account the new
transaction types and parse the corresponding fields.

Updated endpoints:

● GET /addr/:addr:
○ New field: “immatureBalance” -> amount that represents the sum of immature

backward transfers amount related to that address.
○ New field: “unconfirmedTxAppearances” -> Equal to the field

“unconfirmedTxApperances”. It returns the number of unconfirmed TXs in
which the address is involved. It also includes the unconfirmed certificates.

○ New field: “txAppearances” -> Equal to the field “ txApperances”. It returns the
number of confirmed TXs in which the address is involved. It also includes the
certificates. (This change fixes the misspelling of “txApperances”, which is kept
for backwards compatibility.)

○ Field “unconfirmedTxApperances” -> It also includes the unconfirmed
certificates.

○ Field “txApperances” -> It returns the number of confirmed TXs in which the
address is involved. It also includes the certificates.

○ New query parameter: “showImmatureBalance” [0,1] -> by default this
parameter is set to “0” and it doesn’t include immature balance related to the
certificate backward transfers in the “balance” field. If this new parameter is set
to “1”, it will include the immature balance.

○ Field “transactions” -> it now contains certificates as well (instead of
transactions only).

● GET /addr/:addr/utxo:
○ New query parameter: “showImmatureBTs” [0,1] -> the endpoint never returns

superseded backward transfers and by default it doesn’t return UTXOs related to
immature backward transfers. If this new parameter (showImmatureBTs) is set
to “1”, it will also return the immature backwards transfers.

○ For the utxo representing a backward transfer we have some additional fields:
■ “backwardTransfer”: True
■ “mature” -> boolean that indicates if the backward transfer is already

mature (spendable)
■ “maturityHeight” -> integer that specifies at which height the backward

transfer will become mature. It is -1 for unconfirmed backward transfer
(mempool)

■ “blocksToMaturity”-> integer that specifies how many blocks are
missing for the backward transfer to become mature. It is -1 for
unconfirmed backward transfer (mempool)

● GET /addrs/:addrs/utxo:
○ New query parameter: “showImmatureBTs” [0,1] -> the endpoint never returns

superseded backward transfers and by default it doesn’t return UTXOs related to
immature backward transfers. If this new parameter (showImmatureBTs) is set
to “1”, it will also return the immature backwards transfers.

○ For the utxo representing a backward transfer we have some additional fields:
■ “backwardTransfer”: True
■ “mature” -> boolean that indicates if the backward transfer is already

mature (spendable)
■ “maturityHeight” -> integer that specifies at which height the backward

transfer will become mature. It is -1 for unconfirmed backward transfer
(mempool)

■ “blocksToMaturity”-> integer that specifies how many blocks are
missing for the backward transfer to become mature. It is -1 for
unconfirmed backward transfer (mempool)

● POST /addrs/:addrs/utxo:

○ New body’s field: “showImmatureBTs” [0,1] -> the endpoint never returns
superseded backward transfers and by default it doesn’t return UTXOs related to
immature backward transfers. If this new parameter (showImmatureBTs) is set
to “1”, it will also return the immature backwards transfers.

○ For the utxo representing a backward transfer we have some additional fields:
■ “backwardTransfer”: True
■ “mature” -> boolean that indicates if the backward transfer is already

mature (spendable)
■ “maturityHeight” -> integer that specifies at which height the backward

transfer will become mature. It is -1 for unconfirmed backward transfer
(mempool)

■ “blocksToMaturity”-> integer that specifies how many blocks are
missing for the backward transfer to become mature. It is -1 for
unconfirmed backward transfer (mempool)

● GET /addrs/:addrs/txs:
○ New query parameter: “showImmatureBTs” [0,1]. The endpoint never returns

superseded backward transfers and by default it doesn’t return UTXOs related to
immature backward transfers. If this new parameter (showImmatureBTs) is set
to “1”, it will also return the immature backwards transfers.

○ For the utxo representing a backward transfer we have some additional fields:
■ “backwardTransfer”: True
■ “mature” -> boolean that indicates if the backward transfer is already

mature (spendable)
■ “maturityHeight” -> integer that specifies at which height the backward

transfer will become mature. It is -1 for unconfirmed backward transfer
(mempool)

■ “blocksToMaturity”-> integer that specifies how many blocks are
missing for the backward transfer to become mature. It is -1 for
unconfirmed backward transfer (mempool)

● POST /addrs/:addrs/txs:
○ New body’s field: “showImmatureBTs” [0,1]. The endpoint never returns

superseded backward transfers and by default it doesn’t return UTXOs related to
immature backward transfers. If this new parameter (showImmatureBTs) is set
to “1”, it will also return the immature backwards transfers.

○ For the utxo representing a backward transfer we have some additional fields:
■ “backwardTransfer”: True
■ “mature” -> boolean that indicates if the backward transfer is already

mature (spendable)

■ “maturityHeight” -> integer that specifies at which height the backward
transfer will become mature. It is -1 for unconfirmed backward transfer
(mempool)

■ “blocksToMaturity”-> integer that specifies how many blocks are
missing for the backward transfer to become mature. It is -1 for
unconfirmed backward transfer (mempool)

● GET /addr/:addr/balance:
○ New query parameter: “showImmatureBalance” [0,1]. This endpoint never

includes the amounts related to the superseded backward transfer. By default
and with “showImmatureBalance” = 0, it doesn’t include the amount of
immature backward transfers. With “showImmatureBalance” = 1 it also
includes the immature amounts.

● GET /addr/:addr/unconfirmedBalance:
○ New field: “showImmatureBalance” [0,1] -> by default the endpoint includes

only the backward transfers generated by the top quality certificates. If this new
parameter (showImmatureBalance) is set to “1”, the endpoint will include all the
backward transfers in the mempool.

● GET /tx/:txid:
○ New query parameter: “showImmatureBTs” [0,1]. The endpoint never returns

superseded backward transfers and by default it doesn’t return UTXOs related to
immature backward transfers. If this new parameter (showImmatureBTs) is set
to “1”, it will also return the immature backwards transfers.

○ For the utxo representing a backward transfer we have some additional fields:
■ “backwardTransfer”: True
■ “mature” -> boolean that indicates if the backward transfer is already

mature (spendable)
■ “maturityHeight” -> integer that specifies at which height the backward

transfer will become mature. It is -1 for unconfirmed backward transfer
(mempool)

■ “blocksToMaturity”-> integer that specifies how many blocks are
missing for the backward transfer to become mature. It is -1 for
unconfirmed backward transfer (mempool)

● GET /txs:
○ New query parameter: “showImmatureBTs” [0,1]. The endpoint never returns

superseded backward transfers and by default it doesn’t return UTXOs related to
immature backward transfers. If this new parameter (showImmatureBTs) is set
to “1”, it will also return the immature backwards transfers.

○ For the utxo representing a backward transfer we have some additional fields:
■ “backwardTransfer”: True

■ “mature” -> boolean that indicates if the backward transfer is already
mature (spendable)

■ “maturityHeight” -> integer that specifies at which height the backward
transfer will become mature. It is -1 for unconfirmed backward transfer
(mempool)

■ “blocksToMaturity”-> integer that specifies how many blocks are
missing for the backward transfer to become mature. It is -1 for
unconfirmed backward transfer (mempool)

● GET /blocks:
○ New field: “certlength” -> for each block, this field contains the number of

certificates included in that block.
○ Field “transactions” -> it now also contains certificates (instead of transactions

only).
● GET /block/:blockHash:

○ With the introduction of transaction types -4 and certificates -5, the API return
structure has been updated to show the newly introduced contents. Please refer
to the “What you need to know” section for a brief explanation.

○ New field: “cert[]” -> this new field, analogous to the field tx[], contains the list
of certificate ids contained into the block. The superseded certificates are
included.

○ New field: “scTxsCommitment” -> this new field contains the hash of a Merkle
tree containing data related to sidechain transactions and certificates included in
the block. (replaces hashReserved)

● GET /rawtx/:txid:
○ With the introduction of transaction types -4 and certificates -5, the API return

structure has been updated to show the newly introduced contents. Please refer
to the “What you need to know” section for a brief explanation.

● POST /tx/send:
○ In addition to serialized transactions it now also accepts serialized certificates.

New endpoints:

● GET /scinfo:

This new endpoint gives all the information about sidechains on the network.

○ Query parameter: “from” -> it is an integer to support the pagination of the
results.

○ Query parameter: “to” -> it is an integer to support the pagination of the results.

○ Parameter: “onlyAlive” [0,1] -> by default the endpoint includes all the
sidechains. If the parameter “onlyAlive” is set to “1”, only the alive sidechains
will be included in the result.

● GET /scinfo/:scid:

This new endpoint gives all the information about the sidechain having that
specific id.

● GET /addr/:addr/immatureBalance:

This new endpoint gives the immature balance of a specific address.

New insight releases:

New versions of bitcore-node-zen, insight-api-zen and insight-ui-zen have been
released that are compatible with zend v3.0.3-bitcore. Going forward releases on these
repositories will be tagged.

Tags compatible with zend v3.0.3-bitcore and above:

● bitcore-node-zen#v4.0.0
● insight-api-zen#v1.0.1
● insight-ui-zen#v0.5.0

Tags compatible with zend v2.0.24-bitcore and below:

● bitcore-node-zen#v3.1.3
● insight-api-zen#v0.4.4
● insight-ui-zen#v0.4.0

Installing the Zendoo testnet explorer natively:
To test the Zendoo compatible explorer on Linux please follow these steps:

● Compile zend v3.0.3-bitcore from the AddressIndexing branch, please install the
needed dependencies and follow build instructions per README.md with one
exception. When building zend please use this command to execute the build
script: “./zcutil/build.sh --enable-address-indexing -j$(nproc)”

● Install Node.js 14 and insight build dependencies (libczmq-dev python2.7-dev
build-essential)

● Follow the instructions here to install the insight explorer

https://github.com/HorizenOfficial/bitcore-node-zen
https://github.com/HorizenOfficial/insight-api-zen
https://github.com/HorizenOfficial/insight-ui-zen
https://github.com/HorizenOfficial/bitcore-node-zen/tree/v4.0.0
https://github.com/HorizenOfficial/insight-api-zen/tree/v1.0.1
https://github.com/HorizenOfficial/insight-ui-zen/tree/v0.5.0
https://github.com/HorizenOfficial/bitcore-node-zen/tree/v3.1.3
https://github.com/HorizenOfficial/insight-api-zen/tree/v0.4.4
https://github.com/HorizenOfficial/insight-ui-zen/tree/v0.4.0
https://github.com/HorizenOfficial/zen/tree/AddressIndexing
https://github.com/HorizenOfficial/zen/tree/AddressIndexing#building-from-source
https://github.com/HorizenOfficial/insight-ui-zen#getting-started

Using docker-compose to try the Zendoo testnet explorer:
A docker-compose project was created that brings up the full stack needed to run the
explorer. Please see the instructions here to get started.

Examples:
Example of new transaction type version -4 that creates a new sidechain and sends 1 zen to it:
:$ zen-cli -testnet getrawtransaction c205cc95d71dd7f008fe8691a79781b9d0a25ddfa2d34f367839d73b02b3e3a5 1
{
"txid": "c205cc95d71dd7f008fe8691a79781b9d0a25ddfa2d34f367839d73b02b3e3a5",
"version": -4,
"locktime": 937525,
"vin": [
{
"txid": "7150adfda8cdd822572a02020107facd39b7792ee9a37e357ddb7cce33a09a46",
"vout": 0,
"scriptSig": {
"asm":

"3045022100fb94fc8cd4a6443e6491c07b8c11cfffbe100038b5903611f4e43ab098373b1102203b703a8f5d57a585e2c
b7611d60978a3fb7f4d15c8a8fa5ccc55ad8911a5b59201
03c82e97aa4d683af3308b8672f3b2ac2536dbba107d93ca6f1e08672ce6b93f44",

"hex":
"483045022100fb94fc8cd4a6443e6491c07b8c11cfffbe100038b5903611f4e43ab098373b1102203b703a8f5d57a585e
2cb7611d60978a3fb7f4d15c8a8fa5ccc55ad8911a5b592012103c82e97aa4d683af3308b8672f3b2ac2536dbba107d93
ca6f1e08672ce6b93f44"

},
"sequence": 4294967294

}
],
"vcsw_ccin": [
],
"vout": [
{
"value": 2987.99955294,
"valueZat": 298799955294,
"n": 0,
"scriptPubKey": {
"asm": "OP_DUP OP_HASH160 b42167247213fb4cc9d0ed7cf3f26109e0d09c16 OP_EQUALVERIFY

OP_CHECKSIG 6bfae64c63f7bb479d927b0498a06112d06a2943f622efd0e1f5f7cf37820c00 937235
OP_CHECKBLOCKATHEIGHT",

"hex":
"76a914b42167247213fb4cc9d0ed7cf3f26109e0d09c1688ac206bfae64c63f7bb479d927b0498a06112d06a2943f622
efd0e1f5f7cf37820c0003134d0eb4",

"reqSigs": 1,
"type": "pubkeyhashreplay",
"addresses": [
"ztjaQQTWoTH6JKgmTuSux1MvDEQSv24K5c8"

https://github.com/HorizenOfficial/compose-sample-explorer#testnet

]
}

}
],
"vsc_ccout": [
{
"scid": "1a4d5813b260d0cb456c649b005840e1a1eb6eb2e0f98f3af7d201ea1e95d0b8",
"n": 0,
"withdrawalEpochLength": 100,
"value": 1.00009023,
"address": "8d8137d57eee250bdd0302fcad05243276ba059556165517c3d919331cd5bdc8",
"certProvingSystem": "CoboundaryMarlin",
"wCertVk": "...",
"vFieldElementCertificateFieldConfig": [
],
"vBitVectorCertificateFieldConfig": [
],
"customData": "fe20c53828c5d01acaf8b473fcbdb08465d422ebab416580b427519209bb1b3500",
"constant": "a15f637c02977b3c542d3c53a0957f523155f06234d10cdfb123b298826cdf10",
"ftScFee": 0.00000000,
"mbtrScFee": 0.00000000,
"mbtrRequestDataLength": 0

}
],
"vft_ccout": [
],
"vmbtr_out": [
],
"vjoinsplit": [
],
"blockhash": "0000ee0219c38a4feda2aa5bf0b530bd10bee295bea2dbbcb283a6f6f31e5b5c",
"confirmations": 620,
"time": 1634650773,
"blocktime": 1634650773,
"hex": "..."

}

Example of a new transaction version -5 that includes a backward transfer (vout[1]):
:$ zen-cli -testnet getrawtransaction "410a983c24f14bc0c2bef11c3274f399b99f32235742da8b3eca1ebb2986146f" 1
{
"txid": "410a983c24f14bc0c2bef11c3274f399b99f32235742da8b3eca1ebb2986146f",
"version": -5,
"vin": [
{
"txid": "4f84b0c8932780b9e0d71ab0c4cda0fd0ad262a4298102abb619a03d7735e0bf",
"vout": 72,
"scriptSig": {

"asm":
"3045022100b23c00737b235c486cc8a504e7fd54cd36bb53d2c95d336ef1d775b8bbebbbc302206c5d5eea6260e8c8
4cb7ef0a3dabc9e2a25293fe9eb5a3b4fa169da7584e714201
036cda72878f999d49502b29737e7a708dffa4f6198f7cbec18f07ae3874b06a50",

"hex":
"483045022100b23c00737b235c486cc8a504e7fd54cd36bb53d2c95d336ef1d775b8bbebbbc302206c5d5eea6260e8
c84cb7ef0a3dabc9e2a25293fe9eb5a3b4fa169da7584e71420121036cda72878f999d49502b29737e7a708dffa4f6198f
7cbec18f07ae3874b06a50"

},
"sequence": 4294967295

}
],
"cert": {
"scid": "1a4d5813b260d0cb456c649b005840e1a1eb6eb2e0f98f3af7d201ea1e95d0b8",
"epochNumber": 5,
"quality": 5,
"endEpochCumScTxCommTreeRoot":

"a059242590c1337207aa1aab131d9afd67b4385595429aca4d00f90fd2d14e25",
"scProof": "...",
"vFieldElementCertificateField": [
],
"vBitVectorCertificateField": [
],
"ftScFee": 0.00000000,
"mbtrScFee": 0.00000000,
"totalAmount": 5.00000000

},
"vout": [
{
"value": 0.99999000,
"valueZat": 99999000,
"n": 0,
"scriptPubKey": {
"asm": "OP_DUP OP_HASH160 ec6039c0505e74b8f74fb1e22b77da64d30ce6b3 OP_EQUALVERIFY

OP_CHECKSIG 37be36242d04190743e7e50bb8bd268e5891883dd270ffacb65f7f3675ae0100 937840
OP_CHECKBLOCKATHEIGHT",

"hex":
"76a914ec6039c0505e74b8f74fb1e22b77da64d30ce6b388ac2037be36242d04190743e7e50bb8bd268e5891883dd2
70ffacb65f7f3675ae010003704f0eb4",

"reqSigs": 1,
"type": "pubkeyhashreplay",
"addresses": [
"ztphoWCQmyJVuNq2L3SLnRgy2Lw5i5a7hxL"

]
}

},
{

"value": 5.00000000,
"valueZat": 500000000,
"n": 1,
"scriptPubKey": {
"asm": "OP_DUP OP_HASH160 ec6039c0505e74b8f74fb1e22b77da64d30ce6b3 OP_EQUALVERIFY

OP_CHECKSIG",
"hex": "76a914ec6039c0505e74b8f74fb1e22b77da64d30ce6b388ac",
"reqSigs": 1,
"type": "pubkeyhash",
"addresses": [
"ztphoWCQmyJVuNq2L3SLnRgy2Lw5i5a7hxL"

]
},
"backwardTransfer": true

}
],
"vjoinsplit": [
],
"blockhash": "00012834f09159b132315e4001406eb567a4e76c8c17045089b2ba1b4ce41065",
"confirmations": 9,
"blocktime": 1634740194,
"hex": "..."

}

